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Abstract—Choreographies provide means to describe collab-
orations. Each partner runs its own processes. To reduce the
amount of data exchanged and to save resources, part of the
choreography can be run on a community cloud. We show how
private parts of a choreography can still be run on-premise and
how non-private parts can be merged to make use of the cloud
infrastructure.
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I. INTRODUCTION

Cloud computing offers a variety of new possibilities to en-
terprises. Advantages such as elasticity, ease-of-management,
and the pay-per-use cost model ( [1], i. e. that payments only
depend on the resource usage) provide a great potential for
reducing IT costs. Besides these advantages, the community
cloud model [2] offers opportunities for cross-enterprise
collaborations, i. e. scenarios where different enterprises work-
ing jointly together to achieve a certain business objective
(e. g., manufacturing a good). The community cloud model
enables collaborating enterprises to share the same cloud
infrastructure. This does not only decrease the costs (as
they can be split between the parties) but also fosters more
efficient communication between the enterprises since they
are using the same infrastructure. Moreover, collaboration
tools for inter-enterprise cooperations can be provided by
the community cloud (e. g., content management services).
Besides sharing the IT resources also the business processes
of the collaborating enterprises have to interact with each
other (e. g., to share data).

The interaction behavior between processes can be mod-
eled via choreographies that define the control flow relations
between the involved processes [3]. To distribute parts of a
single choreography and their corresponding processes onto
different clouds two challenges are addressed by this work:
(i) To execute parts of one process on different clouds or to
execute one part in the cloud while the other part has to be
performed on-premise, the process has to be split into process
fragments. (ii) If interacting processes of the choreography
have to be executed in the same cloud the number of process
instances can be decreased by merging these processes. This
can significantly improve the execution efficiency of the

choreography.
The remainder of this paper is structured as follows. Firstly,

a scenario for the choreography-based process distribution
is presented in Section II that also serves a motivation for
this work. Necessary background on BPEL and BPEL4Chor
is provided in Section III. Subsequently, a short overview
on process decomposition is given in Section IV. As main
contribution this paper presents a technique to merge two
business processes that are interconnected with a BPEL4Chor
choreography in Section V. Section VI presents an overview
of related work in the field and Section VII concludes and
presents an outlook on future work.

II. MOTIVATING SCENARIO
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Figure 1. Example Car Development Choreography

Figure 1 depicts a choreography for creating sports cars.
For the sake of simplicity, only two parties are involved in
the development: the car manufacturer (briefly CM) and the



engine manufacturer (briefly EM). Firstly, the CM orders
an engine from the EM. Subsequently, both parties develop
a prototype of the chassis and engine respectively, this is
depicted by the collapsed sub process elements. After the
chassis and the engine have been developed, the engine is
delivered to the CM, which creates a first prototype of the
sports car jointly with engineers of the EM. Then, a number
of consecutive tests, depicted by the loop, are performed
with the new car at the site of the CM (e. g., wind tunnel
tests). The test results are shared with the EM to enable both
parties to evaluate them and to perform chassis or engine
modifications (not depicted here). The EM informs the CM
when the evaluation of the test results was completed. Then,
the next test case is performed. After all tests were completed
the final version of the sports car is manufactured.

CM and EM engineers develop and test the prototype
together at the CM site. To enable the engineers of both
companies to access their IT infrastructure and to share
the test data efficiently [4], they decide to pool those IT
resources that are required for prototype development and
testing in a community cloud. We assume that a workflow
engine is hosted in the community cloud where all activities
of the choreography dealing with prototype development and
testing are executed on. This is indicated by the two process
fragments in the red area, i. e. CM2 and EM2. As the CM
and EM do not want to expose their development processes,
these choreography parts are not performed in the community
cloud, but on-premise, i. e. at the private IT infrastructure
of CM (yellow area: CM1 and CM3) and EM respectively
(blue area: EM1 and EM2).

The choreography model itself is rendered using a
BPMN 2.0 collaboration diagram [5], but stored in
BPEL4Chor as described by Decker et al. [6]. In BPEL4Chor,
the CM process and the EM process are each stored as
BPEL process. CM and EM are listed as participants in
the BPEL4Chor topology, where the message links “Devel-
opEngine”, “DeliverEngine”, etc. are defined to connect the
respective communication activities.

In Section IV, we describe how the process models can
be split into the fragments CM1, CM2, CM3, and EM1,
EM2, EM3 respectively. The straight-forward approach is to
provision and run the processes as they are on the respective
workflow engines, i. e. CM1, CM3 on the engine of the
CM; EM1, EM3 on the engine of the EM; and CM2, EM2
on the engine in the community cloud. However, as two
associated processes are running on each engine several
performance and cost disadvantages arise. First of all two
instances have to be created on each engine, resulting in
six instances for the execution of the whole choreography.
Only two instances were required two execute the original
choreography. In this scenario this might be tolerable as it is
not very likely that the choreography is executed that often
because a new car will be only developed every few months
or even years. However, as stated in [7], scenarios exists, for

instance in the banking domain, where a large amount of
process instances are performed every day. In these scenarios
a large amount of instances increases the resource usage and
can become a performance issue as lots of instances might
throttle the underlying IT infrastructure, e. g. the workflow
engine or the databases. Especially, if the infrastructure is
hosted in the cloud the increasing resource utilization leads
to additional costs as cloud providers usually charge on a
pay-per-use basis [8]. Another negative impact on the overall
performance of the choreography is the communication
overhead between processes that are running on the same
workflow engine (e. g. between process fragments CM1 and
CM3). This overhead is caused by the SOAP messages
that are exchanged between the process instances as the
messages have to be usually serialized to the XML-based
SOAP format at the sender’s side and de-serialized at the
receiver side (i. e. transformed to the internal object structure
of the engine). Davis Parashar [9] and Ng et al. [10] showed
that the serialization and de-serialization of complex SOAP
messages can be costly. Additionally, message correlation
has to be performed in order to dispatch the message to the
correct process instance [11]. Again, the message serialization
and correlation may not be problem if only a few instances
are executed, however, in instance-intensive workflows this
provides a significant overhead, even though the instances
reside on the same engine and no network traffic is generated.
In order to improve the performance, i. e. to reduce the
number of process instances and the corresponding message
exchanges between them, we propose to merge all processes
that have to be deployed on the same engine. Hence, CM2,
EM2 are merged to deploy them as single process in the
community cloud. Also the fragments CM1, CM3 and EM1,
EM3 that will run on-premise at CM and EM respectively
should be merged.

III. BACKGROUND

This section provides an overview of elements of BPEL
and BPEL4Chor forming the basis for the splitting and
consolidation described in the subsequent sections.

A choreography encompasses the relations between the
process activities of the partners and the order of the
interactions. We use interconnection choreography models,
which show the behavior of each participant modeled as
business process and where communication activities are
wired together to show the message flow (cf. [12]). We focus
on the Web Service Business Processes Execution Language
(BPEL [11]) as BPEL is still the de-facto language to describe
workflows. The principles of our work, however, are not tied
to BPEL but can be applied to other process description
languages such as BPMN. We use BPEL4Chor [12] as
language to describe the choreography: Each process is
modeled as BPEL workflow and the interconnection is
described in a BPEL4Chor topology.



BPEL offers block-structured and graph-based model-
ing [13]. Even if BPEL requires properly nested activities, all
children of the flow activity may be connected using control
links, which in turn introduce a control flow dependencies.
All activities without an incoming link are executed as soon
as the flow activity is executed. Each activity carries a join
condition which is evaluated as soon as the status of each
incoming link is known. In case the join condition evaluates
to true, the activity is executed. In case it evaluates to false,
the status of all outgoing link is set to “false”. This control
flow semantics is called “dead-path elimination” [11].

BPEL offers to model synchronous and asynchronous
send/receive message exchanges [14]. A synchronous ex-
change is modeled using an invoke activity at the sender’s
side and a pair of receive/reply activities at the re-
ceiver’s side. In this case, BPEL4Chor requires two mes-
sage links to be specified: One from the invoke to the
receive and one from the reply to the invoke. An
asynchronous message exchange is modeled by two one-way
exchanges: invoke and receive on the sender’s side
and receive and invoke on the receiver’s side. Each
invoke/receive pair is connected using a message link.

IV. PROCESS DECOMPOSITION

To perform the test-related activities (i. e., fragment CM2
and EM2) in the community cloud and the other activities
on-premise at the side of the respective partner, the two
process models have to be split into independent process
models. Hence, six process fragments (CM1, CM2, CM3,
and EM1, EM2, EM3) have to be created.

Khalaf and Leymann [15] describe a technique to decom-
pose BPEL process models. The splitting consists of two
aspects: (i) splitting the control links and keep operational
semantics and (ii) split the loops and scopes. Scopes are
BPEL’s way to enable fault handling and compensation
handling. Control links can be split using BPEL’s built-in
mechanisms. BPEL’s semantics for control links is based on
dead path elimination, where “alive” or “dead” is propagated
among the control links. This semantics is coincident with
the execution semantics of BPMN 2.0 in the case of acyclic
processes [16]. For modeling cycles, BPEL enforces explicit
looping activities. For coordinating split loops and split
scopes, additional WS-Coordination based middleware is
needed [17]: Each process model registers itself at a WS-
Coordinator and sends notifications to it in case of a
completion of a split loop or a state change in the split
scope. In turn, the coordinator informs the other processes of
the completion or repetition of the loop and about changes
in the state of the split scope.

V. CHOREOGRAPHY-BASED PROCESS CONSOLIDATION

We merge two processes by replacing message exchanges
by control flow relationships. Each send/receive pair inter-
connects the two processes via a message link and thus

induces an implicit control flow relation between the two
processes (e. g. the CM activity Receive Engine cannot be
performed until the EM activity Send Engine was executed).
We transform this implicit dependency into an explicit
control flow dependency. In the following, we describe the
consolidation of two processes. A repeated application allows
merging of an arbitrary number of processes.

The consolidation operation requires a BPEL4Chor chore-
ography as input that encompasses two participant behavior
descriptions being the process models Pi and Pj . We require
that variables must be specified in the send/receive activities.
This information is used to generate data-flow in Section V-B.

A. Control flow Generation

The general idea of the consolidation is to replace the
communication activities with synchronization activities. We
use assign activities for synchronization. Here, we ensure
right embedding in the control flow and Section V-B describes
which data is copied by the generated assign activity.
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Figure 2. Asynchronous Consolidation

ReceiveInvoke

A1

A2

B1

B2

Assign

A1 B1

A2

Reply
Assign

B2

B3 B3

s r

ml

m
l'

a

a'
y

Figure 3. Synchronous Consolidation

First of all, the consolidation puts the activities, control
links, and variables of the two processes into Pnew . The
activities are put into a flow activity, which leads to a
potential parallel execution of the nested activities. During
the conversion, control links are added. They ensure that
the execution order of the activities is the same as in the



unmerged case. In case variables of Pi and Pj carry the same
name, they are renamed to ensure unique variable naming.

For each message link ml in the set of message links of
the choreography, following steps are taken:

1) Let s be the sending activity and r be the receiving
activity referenced by the message link ml.

2) If s is a reply activity, skip the link: The link models
the reply to a synchronous invoke activity, where two
message links are connected to. One where the invoke
is the sender and one where the invoke is the receiver.
The invoke is only handled once when reaching the
message link, where the invoke is the sending activity.
Thus, the other case does not need to be handled.

3) If s is an asynchronous invoke activity, remove s and
r and add a new assign activity a. The incoming links
of s and r become the incoming links of a. The join
condition of a is the logical OR of the join conditions
of s and r. The set of outgoing links of s and r become
the set of outgoing links of a. This is illustrated in
Figure 2.

4) If s is a synchronous invoke activity, there is a
message link for the reply message. Here, s is the
receiving activity and there is a reply activity y, which
is the sending activity. A new assign activity a is
added and s and y are removed. As depicted in Figure 3
the reply activity y is replaced by a new assign
activity a′. Similar to the asynchronous case, the set of
incoming links and the respective join conditions of s
and r are joined to a. The outgoing links are handled
differently: The receive activity r finishes as soon
as the request message from the invoke activity s is
received. Thus, the outgoing links of r are put into a.
As the invoke activity s is finished as soon as the
message from the reply activity y is received, the
outgoing links of s and y are merged into a′.

5) Remove ml from the participant topology. In case of
s being a synchronous invoke activity, remove ml′,
too.

B. Data Flow Generation

In the last section, the communication activities have been
replaced by assign activities ensuring correct synchroniza-
tion of the two process models merged into one process
model. Besides synchronization, they are used to transform
the former message flow between two activities into a data
flow. Before consolidation, the message to be sent is stored
in a variable. Let this variable be vs. The message is then
transmitted, received, and stored in another variable by the
other process. Let this variable be vr. To convert the message
exchange to a data exchange there are two options:

(i) We copy the content of the variable vs to the variable
vr.

(ii) We replace all occurrences of vr after the receipt of
the message by vs.

<assign>
<copy>

<from variable="SndTestResultsMsg"/>
<to variable="RcvTestResultsMsg" />

</copy>
</assign>

Listing 1. Generated assign activity for hand-over of the test results

For example, assume that the message link SendTestRe-
sults is realized as follows in CM and EM: The variable
SndTestResultsMsg contains the test results generated
by CM. The received test results are stored by EM in
the variable RcvTestResultsMsg. This leads to the
following activities:
s: <invoke inputVariable="SndTestResultsMsg"/>

r: <receive variable="RcvTestResultsMsg"/>. In
case the first approach is used, the generated assign activity
copies SndTestResultsMsg to RcvTestResultsMsg
(Listing 1). This approach is always valid as the variables vs
and vr are kept separated and the data transfer by a message
exchange is “emulated” by copying the data from vs to vr.

The major disadvantage of the first approach is that data
is stored twice after the assign activity. This duplication
can especially become a performance issue if the variables
contain complex or large data elements. Rather than copying
the values, approach ii) can be taken: Instead of copying the
value of vs to vr, all accesses to vr are replaced by accesses
to vs. The assign activity is replaced by an empty activity
as no data has to be copied. This approach, however, becomes
invalid if the original vs is used after the message exchange:
Formerly independent variables are now used as one, which
leads to the lost update problem [18]. To solve this issue,
we start with approach i). Afterwards, we determine the
explicit data flow of the process model as shown by Kopp et
al. [19]. In case, there is no access to vs after the respective
assign activity, we replace all accesses to vr to accesses to vs.
Subsequently, the assign activity is replaced by an empty
activity as the former assign activity does not copy any
data, but is only used for synchronization.

VI. RELATED WORK

In our approach interacting processes are merged: the
processes are designed to work together. Most of the related
work deals with the consolidation (or merging) of processes
that are semantically equivalent. That means, two versions
of the same process are merged. This is different from our
approach as we aim to merge processes that complement each
other. For instance, Mendling et al. [20] consolidate Event-
driven Process Chains (EPC [21]): Semantically equivalent
events and functions of two EPCs are merged.

Küster et al. [22] propose an approach to merge processes
that origin from the same process based on change logs that
contain information about the change operations that led
from the original process to the new processes.



Sun et al. [23] present a consolidation operation for
processes that are modeled as Petri-nets. There, merge points
have to be defined manually. In our approach, the merge
points are set by the communication activities connected by
a message link.

In the area of software engineering merging of either inde-
pendently developed software artifacts or different versions of
the same artifact is an issue. Mens [24] provides an overview
of software merging approaches.

VII. CONCLUSION AND FUTURE WORK

We presented techniques to distribute parts of cross-
partner choreographies in the cloud to perform collaborations
between enterprises more efficiently. This encompassed
a decomposition technique that is required to split the
choreography (e. g., to host part of it on-premise) and also
a new consolidation technique. This new technique can
be applied to merge the processes of the choreography in
order to reduce the number of process instances and the
communication overhead between them if they are hosted
in the same cloud. The consolidation of the processes in
the choreography is conducted by generating control flow
links from the message links that are defined between the
processes.

The consolidation of BPEL loops, correlation sets, scopes,
and the handlers (e. g. event handlers and fault handlers)
that are attached to the scopes has to be investigated in our
future work. We investigated scenarios with a fixed set of
participants. There are also scenarios, where the number
of participant instances is a priori unknown. Additionally,
BPEL4Chor enables link passing mobility, where references
to participants can be passed to make the participant known to
other participants. Handling these two aspects of BPEL4Chor
choreographies are the main focus of our future work.
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